Vegetation

Vegetation is a general term for the plant life of a region; it refers to the ground cover provided by plants. It is a general term, without specific reference to particular taxa, life forms, structure, spatial extent, or any other specific botanical or geographic characteristics. It is broader than the term flora which refers exclusively to species composition. Perhaps the closest synonym is plant community, but vegetation can, and often does, refer to a wider range of spatial scales than that term does, including scales as large as the global. Primeval redwood forests, coastal mangrove stands, sphagnum bogs, desert soil crusts, roadside weed patches, wheat fields, cultivated gardens and lawns; all are encompassed by the term vegetation.

Contents

Classification

  Tundra
  Taiga
  Temperate broadleaf
  Temperate steppe
  Subtropical rainforest

|width="33%"|

  Mediterranean
  Monsoon forest
  Desert
  Xeric shrubland
  Dry steppe
  Semidesert

|width="33%"|

  Grass savanna
  Tree savanna
  Subtropical dry forest
  Tropical rainforest
  Alpine tundra
  Montane forests

|}

Much of the work on vegetation classification comes from European and North American ecologists, and they have fundamentally different approaches. In North America, vegetation types are based on a combination of the following criteria: climate pattern, plant habit, phenology and/or growth form, and dominant species. In the current US standard (adopted by the Federal Geographic Data Committee (FGDC), and originally developed by UNESCO and The Nature Conservancy), the classification is hierarchical and incorporates the non-floristic criteria into the upper (most general) five levels and limited floristic criteria only into the lower (most specific) two levels. In Europe, classification often relies much more heavily, sometimes entirely, on floristic (species) composition alone, without explicit reference to climate, phenology or growth forms. It often emphasizes indicator or diagnostic species which separate one type from another.

In the FGDC standard, the hierarchy levels, from most general to most specific, are: system, class, subclass, group, formation, alliance, and association. The lowest level, or association, is thus the most precisely defined, and incorporates the names of the dominant one to three (usually two) species of the type. An example of a vegetation type defined at the level of class might be "Forest, canopy cover > 60%"; at the level of a formation as "Winter-rain, broad-leaved, evergreen, sclerophyllous, closed-canopy forest"; at the level of alliance as "Arbutus menziesii forest"; and at the level of association as "Arbutus menziesii-Lithocarpus densiflora forest", referring to Pacific madrone-tanoak forests which occur in California and Oregon, USA. In practice, the levels of the alliance and/or association are the most often used, particularly in vegetation mapping, just as the Latin binomial is most often used in discussing particular species in taxonomy and in general communication.

Victoria in Australia classifies its vegetation by Ecological Vegetation Class.

Dynamics

Like all biological systems, plant communities are temporally and spatially dynamic; they change at all possible scales. Dynamism in vegetation is defined primarily as changes in species composition and/or vegetation structure.

Temporal dynamics

Temporally, a large number of processes or events can cause change, but for sake of simplicity they can be categorized roughly as either abrupt or gradual. Abrupt changes are generally referred to as disturbances; these include things like wildfires, high winds, landslides, floods, avalanches and the like. Their causes are usually external (exogenous) to the community—they are natural processes occurring (mostly) independently of the natural processes of the community (such as germination, growth, death, etc.). Such events can change vegetation structure and composition very quickly and for long time periods, and they can do so over large areas. Very few ecosystems are without some type of disturbance as a regular and recurring part of the long term system dynamic. Fire and wind disturbances are particularly common throughout many vegetation types worldwide. Fire is particularly potent because of its ability to destroy not only living plants, but also the seeds, spores, and living meristems representing the potential next generation, and because of fire's impact on fauna populations, soil characteristics and other ecosystem elements and processes (for further discussion of this topic see fire ecology).

Temporal change at a slower pace is ubiquitous; it comprises the field of ecological succession. Succession is the relatively gradual change in structure and taxonomic composition that arises as the vegetation itself modifies various environmental variables over time, including light, water and nutrient levels. These modifications change the suite of species most adapted to grow, survive and reproduce in an area, causing floristic changes. These floristic changes contribute to structural changes that are inherent in plant growth even in the absence of species changes (especially where plants have a large maximum size, i.e. trees), causing slow and broadly predictable changes in the vegetation. Succession can be interrupted at any time by disturbance, setting the system either back to a previous state, or off on another trajectory altogether. Because of this, successional processes may or may not lead to some static, final state. Moreover, accurately predicting the characteristics of such a state, even if it does arise, is not always possible. In short, vegetative communities are subject to many variables that together set limits on the predictability of future conditions.

Spatial dynamics

As a general rule, the larger an area under consideration, the more likely the vegetation will be heterogeneous across it. Two main factors are at work. First, the temporal dynamics of disturbance and succession are increasingly unlikely to be in synchrony across any area as the size of that area increases. That is, different areas will be at different developmental stages due to different local histories, particularly their times since last major disturbance. This fact interacts with inherent environmental variability (e.g. in soils, climate, topography, etc.), which is also a function of area. Environmental variability constrains the suite of species that can occupy a given area, and the two factors together interact to create a mosaic of vegetation conditions across the landscape. Only in agricultural or horticultural systems does vegetation ever approach perfect uniformity. In natural systems, there is always heterogeneity, although its scale and intensity will vary widely. A natural grassland may be homogeneous when compared to the same area of partially burned forest, but highly diverse and heterogeneous when compared to the wheat field next to it.

Global vegetation patterns and determinants

At regional and global scales there is predictability of certain vegetation characteristics, especially physiognomic ones, which are related to the predictability in certain environmental characteristics. Much of the variation in these global patterns is directly explainable by corresponding patterns of temperature and precipitation (sometimes referred to as the energy and moisture balances). These two factors are highly interactive in their effect on plant growth, and their relationship to each other throughout the year is critical.

See also

External links

Classification

Mapping-related

Climate diagrams

References and further reading